
Advanced Mathematical Models & Applications

Vol.7, No.2, 2022, pp.156-167

THE INCOMPLETE LU PRECONDITIONER USING BOTH CSR
AND CSC FORMATS

Khalifa Boumzough1∗, Adnane Azzouzi2, Abderrahim Bouidi1

1Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
2Faculty of Sciences Dhar El Mahraz, Sidi Mohmed ben Abdellah University, Fez, Morocco

Abstract. The main idea of this paper is in the determination of the Incomplete LU factors of a given matrix.

The idea is based on constructing the Incomplete LU factorization using both storage formats compressed sparse

row (CSR) and compressed sparse column (CSC), with the object of minimizing computation time. Numerical

examples and comparing standard incomplete LU factorization preconditioner with the Incomplete LU factoriza-

tion using both storage formats compressed sparse row (CSR) and compressed sparse column (CSC) validate the

effectiveness of this preconditioner when they are applied to accelerate Krylov subspace iteration methods such

as Generalized minimal residual (GMRES).

Keywords: Preconditioner, Incomplete LU factorization, CSR, CSC, GMRES, Nonsymmetric matrix.

AMS Subject Classification: 65F08, 65F50.

Corresponding author: Khalifa, Boumzough, Ibn Zohr University, Faculty of Sciences Agadir, Mathematics

Department, Engineering of Sciences Laboratory, B.P 8106, Agadir 80000, Agadir, Morocco, Tel.: +212611900065,

e-mail: khalifa.boumzough@edu.uiz.ac.ma

Received: 30 March 2022; Revised: 12 May 2022; Accepted: 18 July 2022; Published: 5 August

1 Introduction

We consider solution of sparse systems of linear equation of the from:

Ax = b, A ∈ Rm×n, b ∈ Rn and x ∈ Rm (1)

where A is a given real matrix, b is a given real right-hand-side vector and x is the unknown
vector. A is a sparse matrix that includes many zeros and fewer non zeros compared to n×m.
The most large sparse systems are of practical importance in many areas of scientific computing
and engineering applications (see for more details (Zhong-Zhi, 2007; Bai et al., 2003; Li et al.,
2007; Axelsson, 1996)). The standard methods for solving the linear systems is based on either
the direct methods or the iterative methods (Duff et al., 2017; Saad, 2003). The first method
gives the exact solution in a finite number of steps using a factorization of the coefficient matrix
A to improve the solution. The basic idea of this approach is to consider the most common
LU-decomposition for asymmetric systems to factorize the matrix A as A = LU where L is the
lower triangular matrix and U is the upper triangular matrix. Then, the system (1) can be
solved in two steps, by forwarding substitution in Ly = b and by back substitution in Ux = y,
which is very efficient for small linear systems. The challenging task is that the direct method
can not be applied to large systems due to the fact that the matrix L and U are more full than
A, and that lead to high computer storage. Thus another interesting class of methods known
as iterative methods has been involved for solving the system (1). This methods are used for a
large sparse matrix that contains a lot of zeros.

156



Kh. BOUMZOUGH et al.: THE INCOMPLETE LU PRECONDITIONER USING BOTH...

The methods of Krylov subspace are a field of iterative methods (Bai et al., 2000; Van der
Vorst, 2003; Saad, 2003). The idea of extract an approximate solution from a subspace, are con-
venient and efficient solvers for the system of linear equations (1), one of these iterative methods
is GMRES (Saad & Schultz, 1986; Chen et al., 1999). This method is a widely Krylov iterative
method for solving nonsymmetric linear systems. The GMRES method consists of minimizing
a norm of the residual, it’s related to the BCG method and to other variants of the Lanczos
method. Among the advantage of the GMRES algorithm on other Krylov methods is their well
stability, combined with a nonincreasing residual norm sequence. In order to promote effective-
ness, the GMRES algorithm has been combined with a good preconditioner. The preconditioner
plays a crucial role in improving the convergence property success of the preconditioned Krylov
subspace iterations, whereas the choice of the preconditioner is more important than the choice
of the Krylov iterative method. The idea of the preconditioning is only to transform the original
linear system into one which, is likely to be easier to solve with an iterative solver. It contributes
to the speed of convergence of the method, which is a more crucial part of high-performance
computing. In general, there are two well know classes of basic preconditioners are: Jacobi pre-
conditioner and incomplete factorization. The Jacobi preconditioner is based to use the diagonal
matrix such as the preconditioner see the refer Saad (2003). The ILU factorization can produce
a sparse lower triangular matrix L and a sparse upper triangular matrix U by using Gaussian
elimination with certain elimination rules so that the error matrix E = LU − A became small
and meets certain constraints such as the existence of zero entries at certain positions (see for
examples (Axelsson, 1996; Kraus et al., 2018; Saad, 2003)). The efficiency of the preconditioner
depends on how well M−1 = (LU)−1 approximates A−1. The success of the iterative method is
related to the storage method in order to obtain a better solution. There are a lot of methods
to store the matrix see (Gao et al., 2021; Bell & Garland, 2009; Li et al., 2014; Duff et al., 2017;
Saad, 2003; Mellor-Crummey & Garvin, 2004; Greathouse & Daga, 2014), CSR (compressed
sparse row) and CSC (compressed sparse column) are most efficient and most popular. In addi-
tion, these two compressed storage schemes can save a great number of memories, however more
calculation will be involved. The CSR format is the ease of construction and manipulation, thus
it’s the most ideal for matrix-by-vector products which is one of the essential operations in the
iterative method. The performance of the operations SPMV on CSR can differ significantly on
high-performance computers, whereas for some algorithms that proceed by column and rows in
this situation, the performance CSR format is not satisfactory. The objective of this paper is
to construct an incomplete LU preconditioner (ILU) using the both storage formats. We con-
struct a CSR format from an existing CSC format. We also show that the preconditioner ILU
based on the both storage formats CSR and CSC is the efficient preconditioner in terms of the
computation times CPUs.

The remainder of this paper is arranged as follows, Section 2 provides background on various
sparse matrix storage formats. In Section 3, we discuss ILU Factorization Preconditioners.
Several classes of experimental problems are described in Section 4. Numerical results are given
and discussed in Section 5. Finally, some concluding remarks are given in Section 6.

2 Storage scheme

The majority of problems in sciences or engineering lead to sparse linear systems after the
discretization of PDEs, which contains a lot of zeros. These zeros give almost no information,
but they consumes a lot of memory. Storing the matrix is keeping only the nonzero elements
in a vector VA of length nnz and conserve their coordinates in two other vectors JA and IA.
There are three ways of compress storage:

• COO IA stores the row indices of length nnz, JA stores the column indices of length nnz.

• CSR Compressed Sparse Row, JA stores the column indices of length nnz, IA stores only

157



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

the beginning number of the first element of each row of length n+ 1.

• CSC Compressed Sparse Column, IA stores the row indices of length nnz, JA stores only
the beginning number of the first element of each column of length n+ 1.

The coordinate formats are the storage scheme used by the Matrix Market database for matrices
and systems of linear equations; for details, see the refer Davis & Hu (2011). On the other hand,
the Compressed Sparse Row and Column formats are the most general (Duff et al., 2017; Saad,
2003), they keep only the necessary elements, are inefficient, requiring an indirect addressing
step for each scalar operation in a matrix-vector product or a preconditioner to solve as shown
below.

For example, let A be a square matrix of order 5× 5

A =


a11 a12 0 a14 0
a21 a22 0 a24 0
a31 0 a33 a34 a35
0 0 a43 a44 0
a51 0 0 a54 a55


The arrays VA, JA, and IA are

VA =

row1︷ ︸︸ ︷
a11 a12 a14

row2︷ ︸︸ ︷
a21 a22 a24

row3︷ ︸︸ ︷
a31 a33 a34 a35

row4︷ ︸︸ ︷
a43 a44

row5︷ ︸︸ ︷
a51 a54 a55

JA = 1 2 4 1 2 4 1 3 4 5 3 4 1 4 5

IA = 1 4 7 11 13 16

We note that the compressed sparse column CSC equivalent to represent AT in format CSR.
One of the fundamental primitives used in iterative methods for solving sparse linear systems

is sparse Matrix-vector multiplication (spMV ). We consider the spMV operation y ←− y+Ax,
where A is sparse Matrix and x, y are dense vectors. Algorithmic-ally the spMV is as fallows
(i, j): ai,j ̸= 0: yi = yi + ai,j .xj , Where ai,j denote the elements of A.

The most common data structure used to store a sparse matrix for spMV computation is
compressed sparse row (CSR), for details one can refer to Mellor-Crummey & Garvin (2004);
Greathouse & Daga (2014). One of the advantages of CSR is the ease of construction and
manipulation (no preprocessing of the matrix needed), which means that CSR is the most ideal
for spMV , we now give an algorithmic description of the spMV on CSR.

1 for i = 1 To n do
2 y(i) = 0;
3 for j = IA(i) To IA(i+ 1)− 1 do
4 jj = JA(j);
5 y(i) = y(i) + V A(j) ∗ x(jj);

We observe that spMV on CSR creates the products of row vectors and column vectors
of VA. The same principle when using the matrix-vector product definition (Goharian et al.,
2003). It provides excellent compression of structured and unstructured sparse matrices. The
performance of the spMV basis of CSR is good on CPUs. While some algorithms proceed
by columns and rows. In this situation, the CSR format used for the sparse matrix defines
the algorithm by impacting the performance. To improve the efficiency, we need to use both
storage formats on these algorithms. Among these algorithms, the incomplete LU factorization
algorithm (without storage of the original matrix) requires one loop to build the elements per
row and the second loop to build the elements per column. As a result, we suggested combining

158



Kh. BOUMZOUGH et al.: THE INCOMPLETE LU PRECONDITIONER USING BOTH...

both storage formats (CSR and CSC) by using the advantages of each of them for constructing
ILU factorization.

3 ILU Factorization Preconditioners

A general Incomplete LU factorization process computes a sparse lower triangular matrix L and
a sparse upper triangular matrix U , such that E = LU−A are small satisfies certain constraints
such as containing zero entries in some position Saad (2003). The Incomplete LU factorization
technique with no fill-in denoted by ILU(0) take the zero pattern to be precisely the zero pattern
of the original matrix A. By definition, the L and U matrices in ILU(0) have the same number
of nonzero elements as the original matrix A. The incomplete factorization technique with no
fill-in consists of the performing the i, j, k version of Gaussian elimination, and dropping any
element in L and U that fills outside the pettern of A. We will denote the simplest choice by
P = {(i, j)/ai,j = 0}

Algorithm 1: [L,U ]=Factorisation-ILU(A,P )

1 for k = 1, . . . , n− 1 do
2 for i = k + 1, . . . , n and if (i, k) /∈ P do
3 ai,k = ai,k/ak,k;
4 for j = k + 1, . . . , n and if (i, j) /∈ P do
5 ai,j = ai,j − ai,k ∗ ak,j ;

The above algorithm is for the dense storage array. However, most matrices obtained from
the real problems are spares, so the above algorithm is inefficient. In this case, we are using the
matrix in CSR format as one of the storage methods. Next, we will describe the Incomplete LU
factorization applied to a sparse matrix in CSR format.

3.1 The Incomplete LU factorization for spare matrix in CSR format

An incomplete LU factorizations algorithm depend on the representation of the input matrix A
by three arrays: VA continues the non-zero elements of length nnz, JA stores column indices,
and IA stores only the starting number of the first element in each row. The values of the
resulting factors L and U are stored in the array luval, except that the entries for those on
the main diagonal of the unit lower triangular matrix L are not stored. Thus, it is needed to
store the two factors in a single matrix. This matrix is denoted by L/U . Note that since the
pattern of L/U is the same as that of the input matrix A, the other integer matrices in the
CSR representation for the LU factors are not needed. So, ja(k), which is the column position
of element a(k) in the input matrix, is also the column position of element luval(k) in the L/U
matrix.

As result, the standard Incomplete LU algorithm with no-fill made no assumption about the
sparsity pattern of A. The nonzero pattern of L and U is often taken to be identical to that
of the original matrix. This has the advantage that no additional storage space is required for
the nonzero structure of the incomplete decomposition. The ILU factorization in format CSR
is very complicated, we use a lot of loops for this algorithm, However, the ILU factorization
without CSR is simple, we need just three loops. Therefore the ILU without CSR requires less
time than ILU in format CSR for the decomposition of the matrices. For that we suggested the
new technique for computing ILU, this new technique depends on using two compressed storage
schemes CSR and CSC to compute ILU.

159



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

3.2 Incomplete LU factorization with CSR and CSC

The preconditioning ILU makes the algorithm more complicated and require more calculation for
a single iteration, thus increases the computation cost for one single iteration. Especially if we
consider that an algorithm proceeds by row (or column), it is unsuitable to use the CSC format
(or CSR) of a matrix, by reason of the CSC slow row slicing operation (consider CSR). However,
the algorithm of the ILU factorization proceeds by column (for computation the lower triangular
L factor), and by row (for computation the upper triangular U factor), so it is unsuitable to use
only one format (CSR or CSC). it turns out that a more efficient implantation of the practical
ILU method can result from the appropriate use of both storage formats in various parts of the
algorithm. thus it is natural to store L by column and U by row and to have the lower and
upper triangular parts of A stored similarly. It mainly depends that on the following steps:

Step 1 The matrix A is stored in CSR and CSC formats, we define extra help array Diag[1, . . . , n]
which points to the diagonal elements of A in CSC format. The array Point[1, . . . , n] is
an array of integers, which points to the entries in U of row i.

Step 2 From an existing CSC format, we will construct a CSR. The factor L is stored by column,
we use the coordinates of the matrix A in CSC format for construct the lower triangular
part of the matrix, and we assume that the nonzeros in each row are stored in order by
column number, then a pointer of row ia0 contains the number of nonzeros in each row
with next = ia0(j), where j is the index row in CSC format. This pointer array is update
after each elimination step by increasing a point in each pointer at the next nonzero in the
row ia0(j) = next + 1. Finally, the pointer ia0 stores the index of the diagonal elements
in CSR format. The factor L are stored and calculated in CSR format by column.

Step 3 For constructing of the Incomplete upper triangular matrix U , we use this k = ia0(j) :
ia(j + 1) − 1 for to extract the upper part of the matrix A in CSR format by each row,
then we can caluluted the factor U by the Pseudo-code.

for i=ia0(j):ia(j+1)-1

ii=Point(ja(i))

if(ii>0)

a(i)=a(i)-a(next)*a(ii)

endif

endfor

where j is the index row in CSC format. We can use this step for constructing an algorithm
that generates the lower triangular matrix L by columns and the upper triangular matrix
U by rows. Thus, we developed an algorithm, which combines two formats CSR and CSC

4 Description of experiments

A number of numerical experiments have been performed to assess the stability, accuracy and
efficiency of the incomplete LU factorization using the both storages CSR and CSC. This is
achieved through comparisons between the numerical behaviour of Incomplete LU factorization
with CSR and CSC and standard ILU preconditioners applied to Krylov subspace iteration
methods such as GMRES (Saad & Schultz, 1986). The test matrices from the suite Sparse
Matrix Collection.

In the experiments, the CSR and CSC formats are used to store all the matrices and all
codes are written in Fortran, compiled on a Linux system and run on an Intel Xeon(R) CPU
E5420@ 2.50GHZ with 10 GB of main memory. In addition, all initial guesses x0 for the iterative

160



Kh. BOUMZOUGH et al.: THE INCOMPLETE LU PRECONDITIONER USING BOTH...

solvers are randomly generated with a uniform distribution such that their entries belong to the
interval [−1, 1] , and the iterations are terminated either when the number of iterations exceeds
7000 or when the current iterate satisfies ∥rk∥ ≤ 10−7∥r0∥ , where rk = b− Axk is the residual
at the kth iteration.

4.1 The suite Sparse Matrix Collection

The Suite Sparse Matrix Collection ia a large ane actively growing set of spare matrices that arise
in many application in science and engineering with underlying 2D or 3D geometry (as structural
engineering, computational fluid dynamics, model reduction, electromagnetic, semiconductor
devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics,
and other dscretizations) and those that typically do not have such geometry (optimization,
circuit simulation, economic and financial modelling, theoretical and quantum chemistry, chem-
ical process simulation, mathematics and statistics, power networks, and other networks and
graphs). For details, one can refer to Davis & Hu (2011).

In Table 1, we list twenty seven sparse matrices as our Suite Sparse Matrix Collection.

Table 1: The suite sparse matrix collection

Name plot n nnz Application

atmosmodd 1270432 8814880 Computational Fluid Dynamics Problem

cdde5 961 4681
Subsequent Computational Fluid Dynamics
Problem

chipcool0 20082 281150 Model Reduction Problem

dc1 116835 766396 Circuit Simulation Problem Sequence

majorbasis 160000 1750416 Optimization Problem

pde900 900 4380 2D/3D Problem

pde2961 2961 14585 2D/3D Problem

sherman4 1104 3786 Computational Fluid Dynamics Problem

steam1 240 2248 Computational Fluid Dynamics Problem

stomach 213360 3021648 2D/3D Problem

t2em 921632 4590832 Electromagnetics Problem

venkat01 62424 1717792
Computational Fluid Dynamics Problem Se-
quence Problem

wang3 26064 177168 Semiconductor Device ProblemProblem

wang4 26068 177196 Semiconductor Device Problem

c-55 32780 403450 Optimization Problem

cage11 39082 559722 Directed Weighted Graph

torso2 115967 1033473 2D/3D Problem

torso3 259156 4429042 2D/3D Problem

trans5 116835 749800 Subsequent Circuit Simulation Problem

atmosmodl 1489752 10319760 Computational Fluid Dynamics Problem

1138 bus 1138 4054 Power Network Problem

atmosmodm 1489752 10319760 Computational Fluid Dynamics Problem

bcstk12 1473 34241 Duplicate Structural Problem

bcsstk22 138 696 Structural Problem

161



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

bcsstm10 1086 22092 Structural Problem

cage14 1505785 27130349 Directed Weighted Graph

pores 2 1224 9613 Computational Fluid Dynamics Problem

5 Numerical results

We examine the robustness, effectiveness of Incomplete LU using the both storages CSR and
CSC preconditioner by numerically comparing it with the standard ILU preconditioner, which
is used to accelerate GMRES (Saad & Schultz, 1986). We compare the methods with respect
to the preconditioning time (CPUp), the iteration time (CPUit), the total number of iteration
steps (IT ) and the total CPU time

Table 2: Notation

Notation Description

n Number of rows in the matrix
nnz The nonzero of the matrix
CPUp The CPU time for constructing a preconditioner
IT The total number iteration
CPU The total CPU time

The numerical results in this section concern the ILU using the both storages CSR and CSC
denoted as ILUcsc csr− and the standard ILU−preconditioned GMRES, denoted ILUcsc csr −
GMRES and ILU − GMRES, respectively, for solving systems of linear equations with coeffi-
cient matrices from the Suite Sparse Matrix Collection; see Table 1. In Table 3 we list the total
CPU time for ILUcsc csr and ILU. It interesting to compare of the efficiency of the Incomplete LU
factorization by different techniques of the implementation. The results are listed in the Table 3.

Table 3: The comparison of the efficiency of two Incomplete LU factorization

Matrix no Matrix name CPUp

ILUcsr csc ILU

1 atmosmodd 0.382 0.530
2 cdde5 1.400E-04 2.450E-04
3 chipcool0 1.778E-02 1.785 E-02
4 dc1 8.185E-02 55.988
5 majorbasis 5.843E-02 7.373E-02
6 pde900 1.48E-04 2.17E-04
7 pde2961 3.76E-04 5.329E-04
8 sherman4 1.360E-04 2.480E-04
9 steam1 2.390E-04 3.729E-04
10 stomach 0.125 0.131
11 t2em 0.147 0.241
12 venkat01 0.193 0.173
13 wang3 6.819E-03 8.728E-03
14 wang4 6.451E-03 9.209E-03
15 c-55 4.462E-2 6.598E-2

162



Kh. BOUMZOUGH et al.: THE INCOMPLETE LU PRECONDITIONER USING BOTH...

16 cage11 3.898E-002 4.390E-002
17 torso2 1.986E-002 2.426E-002
18 torso3 0.1197 0.1247
19 trans5 9.200E-02 57.701
20 atmosmodl 0.482 0.582
21 1138 bus 1.769E-04 2.283E-04
22 atmosmodm 0.455 0.648
23 bcstk12 2.399E-03 3.360E-03
24 bcsstk22 3.899E-05 1.209E-04
25 bcstm10 2.178E-03 1.993E-02
26 cage14 1.598 1.919
27 pores 2 2.909E-04 3.770E-04

To investigate the performance of the algorithms of the standard ILU and ILUcsc csr, we use
twenty seven sparse matrices with different structures, in this study we use the symmetric and
non-symmetric matrices. The efficiency is characterized by the CPU time using for constructing
the incomplete LU factorization. We see that ILUcsc csr requires less time for matrix decom-
position. However, the standard ILU need more time for constructing of L and U factors. We
observe that the total computation time for Standard ILU as long as that for the ILUcsc csr for
constructing the incomplete LU factorization in the three matrices dc1, t2em, and trans5. For
example the total computation time for standard ILU is 51.742 s, on the other hand the CPU
time ILUcsc csr is 6.46E − 2 s for the decomposition the matrix dc1. This because the standard
ILU involves in many more complicated require more calculations. However ILUcsc csr use the
same implementation principle of ILU for the dense matrix.

Table 4: IT and CPU for GMRES for matrices in table 1

Matrix no Matrix name
GMRES ILUcsc csr −GMRES ILU−GMRES

IT CPU IT CPU IT CPU

1 atmosmodd 918 1152.571 125 245.394 125 247.651
2 cdde5 1347 0.540 85 3.772E-02 85 3.265E-02
3 chipcool0 - - 65 0.497 65 0.506
4 dc1 - - 551 134.239 551 141.987
5 majorbasis 91 4.476 9 0.268 9 0.277
6 pde900 100 5.111 96 2.845E-02 96 3.568E-02
7 pde2961 187 0.305 48 2.987E-02 48 3.093E-02
8 sherman4 948 2.422 32 9.608E-03 32 9.56E-03
9 steam1 518 0.265 4 5.869E-04 4 5.950E-04
10 stomach 169 11.434 9 0.440 9 0.496
11 t2em - - 604 1811.935 604 1990.177
12 venkat01 - - 18 0.908 18 0.945
13 wang3 5506 361.158 65 0.940 65 0.803
14 wang4 2519 166.707 56 0.673 56 0.667
15 c-55 - - 463 32.293 463 32.745
16 cage11 17 0.1016 5 8.177E-02 5 8.208E-02
17 torso2 29 0.3031 6 7.328E-02 6 7.553E-02
18 torso3 140 7.7413 23 1.1031 23 1.0712
19 trans5 - - 159 21.475 159 24.082
20 atmosmodl 938 1107.254 80 128.364 80 148.289

163



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

21 1138 bus 461 0.631 142 0.110 142 0.116
22 atmosmodm 149 55.882 29 26.244 29 26.622
23 bcsstk12 1395 7.403 142 0.211 142 0.207
24 bcsstk22 543 2.469E-002 34 2.475E-03 34 2.484E-03
25 bcsstm10 933 2.531 84 7.061E-02 84 7.332E-02
26 cage14 14 3.617 4 1.909 4 1.965
27 pores 2 - - 40 1.009E-02 40 1.055E-02

In the table 4, we list the total number of iteration steps and the total CPU time for
ILUcsc csr − GMRES and ILU-GMRES, for solving the large linear systems using the suite
sparse matrix collection. From this table, we can see that the total number of iteration step
of the ILUcsc csr and the standard ILU preconditioners are quite comparable, but the execu-
tion time of the ILUcsc csr−preconditioned GMRES iterations are much less than those of the
ILU−preconditioned GMRES iteration. In general, ILUcsc csr outperforms ILU-GMRES in total
computing time. As a result, it turns out that in the sense of execution time a more effective
implementation of the practical ILUcsc csr method comes from appropriately using both storage
formats in various parts of the algorithm.
We plot the curves of CPU time versus the total number of iterations in Figs.1, 2, and 3 for the

Fig. 1. Curves of the CPU time versus the number of iterations for dc1

matrices dc1, t2em, and trans5, respectively. The red line with diamond markers is the result of
preconditioned GMRES with the incomplete LU factorization using both CSR and CSC storage,
denoted by ILUcsc csr −GMRES, and the blue line with circle markers is for GMRES precondi-
tioned with the standard incomplete ILU factorization, designated by ILU − GMRES. We see
that ILUcsc csr−GMRES took the least time to reach the convergence, although ILU−GMRES
required the same number of iterations but took more time to converge at the three matrices.

164



Kh. BOUMZOUGH et al.: THE INCOMPLETE LU PRECONDITIONER USING BOTH...

Fig. 2. Curves of the CPU time versus the number of iterations for t2em

Fig. 3. Curves of the CPU time versus the number of iterations for trans5

165



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.2, 2022

6 Conclusion

The purpose of this work is to construct an ILU preconditioner using both CSR and CSC formats.
Our numerical experiments have shown that ILU preconditioner using both CSR and CSC
formats outperform the standard incomplete triangular factorization preconditioners on aspects
of computation time. However, the number of iterations is identical when it is used to accelerate
the Krylov subspace iteration methods such as GMRES for several problems. We note that the
technique developed in this paper can be very useful for solving ill-conditioned linear systems
resulting from the approximation of inverse problems (Mamiyeva, 2021; Ouaissa et al., 2022;
Rasheed et al., 2021; Sultanova, 2021) and presents a means of accelerating solvers proposed in
Nachaoui (2004).

Further research, we will interesting to construct an ILU preconditioner using both CSR and
CSC formats with some dropping rules, such as having zero entries in some positions or adding
entries that are null before doing the incomplete LU factorization.

References

Axelsson, O. (1996). Iterative solution methods. Cambridge Unuversity Press.

Bai, Z.Z. (2000). Sharp error bounds of some Krylov subspace methods for non-Hermitian linear
systems. Applied Mathematics and Computation, 109(2-3), 273-285.

Bai, Z.Z., Golub, G.H., & Ng, M.K. (2003). Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems. SIAM Journal on Matrix Analysis and
Applications, 24(3), 603-626.

Bell, N., Garland, M. (2009). Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In Proc. Conference High Performance Computing Networking, Storage
and Analysis, SC’09, ACM, New York, NY, 14-19.

Chen, J.Y., Kincaid, D.R., & Young, D.M. (1999). Generalizations and modifications of the
GMRES iterative method. Numerical Algorithms, 21(1), 119-146.

Davis, T.A., Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38 (1), 1-25.

Duff, I.S., Erisman, A.M. & Reid, J.K. (2017). Direct Methods for Sparse Matrices. 2nd Edition,
Oxford University Press, London.

Gao, J., Xia, Y., Yin, R., & He, G. (2021). Adaptive diagonal sparse matrix-vector multiplication
on GPU. Journal of Parallel and Distributed Computing, 157, 287-302.

Greathouse, J.L., Daga, M. (2014, November). Efficient sparse matrix-vector multiplication on
GPUs using the CSR storage format. In SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, IEEE, 769-780.

Goharian, N., Jain, A., & Sun, Q. (2003). Comparative analysis of sparse matrix algorithms for
information retrieval. Computer, 2, 0-4.

Kraus, J., Lymbery, M. (2018). Incomplete factorization by local exact factorization (ILUE).
Mathematics and Computers in Simulation, 145, 50-61.

Li, K., Yang, W., & Li, K. (2014). Performance analysis and optimization for SpMV on GPU
using probabilistic modeling. IEEE Transactions on Parallel and Distributed Systems, 26(1),
196-205.

166



Kh. BOUMZOUGH et al.: THE INCOMPLETE LU PRECONDITIONER USING BOTH...

Li, L., Huang, T.Z., & Liu, X.P. (2007). Asymmetric Hermitian and skew-Hermitian splitting
methods for positive definite linear systems. Computers & Mathematics with Applications,
54(1), 147-159.

Mamiyeva, T. (2021). On Cauchy and boundary value problems for the third-order discrete-
multiplicative derivative equation. Advanced Mathematical Models & Applications, 6(2) 174-
181.

Mellor-Crummey, J., & Garvin, J. (2004). Optimizing sparse matrix-vector product compu-
tations using unroll and jam. The International Journal of High Performance Computing
Applications, 18(2), 225-236.

Nachaoui, A. (2004). Numerical linear algebra for reconstruction inverse problems. J. Comput.
Appl. Math., 162(1), 147-164.

Ouaissa, H., Chakib, A., Nachaoui, A., Nachaoui, M. (2022). On numerical approaches for
solving an inverse Cauchy stokes problem. Appl. Math. Optim., 85(1), 1-37.

Rasheed, S.M., Nachaoui, A., Hama, M.F. & Jabbar, A.K. (2021). Regularized and precondi-
tioned conjugate gradient like-methods methods for polynomial approximation of an inverse
Cauchy problem. Advanced Mathematical Models & Applications, 6(2), 89-105.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM.

Saad, Y., Schultz, M.H. (1986). GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3),
856-869.

Sultanova, V. (2021). Construction of the adjoint problem to the discrete problems for the second
order equation. Advanced Mathematical Models & Applications, 6(2), 182-188.

Van der Vorst, H.A. (2003). Iterative Krylov Methods for Large Linear Systems (No. 13). Cam-
bridge University Press.

Zhong-Zhi, B.A.I. (2007). Splitting iteration methods for non-Hermitian positive definite systems
of linear equations. Hokkaido Mathematical Journal, 36(4), 801-814.

167


